November 1, 2020

Student Pharmacists as Pediatric Asthma Educators

by Caroline Adrian, Doctor of Pharmacy Candidate, University of Mississippi School of Pharmacy

Review and Summary of: Elliott JP, Marcotullio N, Skoner DP, et al. Impact of student pharmacist-delivered asthma education on child and caregiver knowledge. Am J Pharm Educ. 2014 Dec 15;78(10):188.

 As a student pharmacist, I recognize the importance of medication adherence in the management of chronic conditions. However, when I was diagnosed with asthma as a child, I did not understand the concept of maintenance therapy. I didn't understand that I needed to use my inhaled corticosteroid every day to prevent exacerbations. Frankly, I didn't even know what that inhaler was for, so I frequently missed doses. Looking back, I wish someone had taken the time to educate me about asthma and the medications I needed to use so I might have had better symptom control. I recently discovered a study1 that looked at the impact of student pharmacists as asthma educators to both children and their caregivers. I was eager to learn more.

This cross-sectional study enrolled children and caregivers who attended at least 1 of 6 For Your Good Health, LLC asthma camps at Duquesne University over a two year period. The asthma camp series was developed to teach children, ages 5-17 years, and their caregivers asthma self-management skills. The camps were directed by an interdisciplinary team of physicians and pharmacists and staffed by student pharmacists and university athletes. Camps were held on Saturdays from 9:00 am to 2:00 pm, with asthma screenings and education being conducted during the morning session. The primary objective was to evaluate the impact of student pharmacist-delivered asthma education on child and caregiver knowledge about asthma. The secondary objective was to assess child and caregiver baseline asthma knowledge and its correlation with asthma control.

The hands-on educational activities implemented at each asthma camp were developed by sixth-year Doctor of Pharmacy students under the guidance of two faculty members. The activities focused on the 4 key components of effective asthma management: avoidance of triggers, medication compliance, proper inhaler technique, and the importance of an asthma action plan. Some of the activities included interactive skits to teach proper inhaler technique, game shows highlighting the differences between controller and reliever medication, and a memory game of asthma triggers. One group of students built a large cardboard house that contained common asthma triggers for their activity. They worked with the children to make the house more "asthma-friendly," discussing how to limit exposure to each of the triggers. Caregivers were not required but strongly encouraged to attend with their children.  The participants rotated through 4 stations of activities that lasted up to 15 minutes each. 

An asthma knowledge questionnaire was administered separately to the children and to the caregivers at the beginning and end of each asthma camp to assess the effectiveness of the educational program. Of the 87 children enrolled in the study, 76 completed both the pre- and post-intervention questionnaires. Only 45 caregivers participated in the educational intervention with 42 completing the pre- and post-intervention questionnaires. Statistical analyses compared the pre and post-intervention scores. 

The study found that the asthma education program was effective in increasing asthma knowledge among children. However, the student pharmacist-delivered education was not effective in increasing asthma knowledge among caregivers. Many of the caregivers who participated did not have children with asthma and the investigators also noted that many caregivers opted to socialize amongst themselves rather than participate in the educational components of the For Your Good Life camp. It was unclear to me whether the investigators designed the educational intervention with the caregivers in mind, or if they designed the intervention to focus on the children alone with hopes that the caregivers would be willing to participate. It seems the educational intervention was engaging for the children but perhaps not of great interest to adults. However, the investigators found a strong association between caregiver pre-intervention scores and asthma control in their children, suggesting that caregiver knowledge of asthma plays a role in asthma control.

This study found that the educational program was beneficial to the children who participated as well as the student pharmacists. The student pharmacists were able to practice their role as future educators by developing and implementing novel educational activities. A weakness of this study was that the investigators used different student pharmacists at the camps and this may have led to differences in how the educational activities were conducted. A limitation of this type of educational intervention is that the development and implementation of such a camp requires a significant amount of time and resources.

This was the first study to assess the effectiveness of student pharmacists as asthma educators in a pediatric population. Other studies have shown student pharmacists can effectively educate adults with chronic illness.2,3 Other studies have found that asthma education of children and caregivers can lead to better symptom management and fewer acute exacerbations,4 and educational programs for asthma self-management in children alone can also lead to improved lung function and fewer trips to the emergency department.5

This is a great way for educators to engage student pharmacists to conduct hands-on learning experiences teaching children about asthma. Similarly, structured learning activities may be beneficial in teaching children about other disease states as well. Diabetes and epilepsy are also common chronic conditions in children where student pharmacists can assist in delivering fun educational programs to kids. 

References:

  1. Elliott JP, Marcotullio N, Skoner DP, et al. Impact of student pharmacist-delivered asthma education on child and caregiver knowledge. Am J Pharm Educ. 2014 Dec 15;78(10):188.
  2. Letassy N, Dennis V, Lyons TJ, et al. Know your diabetes risk project: Student pharmacists educating adults about diabetes risk in a community pharmacy setting. J Am Pharm Assoc (2003). 2010 Mar-Apr 1;50(2):188-94.
  3. Shrader S, Kavanagh K, Thompson A. A diabetes self-management education class taught by pharmacy students. Am J Pharm Educ. 2012 Feb 10;76(1):13.
  4. Agusala V, Vij P, Agusala V, et al. Can interactive parental education impact health care utilization in pediatric asthma: A study in rural Texas. J Int Med Res. 2018 Aug;46(8):3172-3182.
  5. Guevara JP, Wolf FM, Grum CM, et al. Effects of educational interventions for self-management of asthma in children and adolescents: systematic review and meta-analysis. BMJ. 2003 Jun 14;326(7402):1308-9.

October 27, 2020

Continuing Education and Performance Evaluation: Essential Elements of Community Pharmacy Success

by Dewansia Sutton, Doctor of Pharmacy Candidate, University of Mississippi School of Pharmacy

Summary and Analysis of: Grant M, Remines J, Nadpara P, Goode J. Impact of Live Training on Medication Errors in a Community-Based Pharmacy Setting. Innov Pharm. 2020;11(3): Article 11. https://doi.org/10.24926/iip.v11i3.3291

The Academy of Managed Care Pharmacy reports that medication errors affect at least 1.5 million people every year resulting in direct medical costs of at least $3.5 billion and result in significant morbidity and mortality.1 I know that medication errors are a widespread problem, so I chose this study2 because I was curious about the influence of training programs on the practice and whether they would be a beneficial addition to my future practice as a community pharmacist. This study assessed the benefit of live interactive training and also analyzed the impact of pharmacy prescription volume and the ratio of pharmacists to pharmacy technicians on the incidence of medication errors.

The study analyzed the incidence of medication errors at several Kroger pharmacies in one district before and after a live training program that addressed the most common types of medication errors reported in the previous six months. These errors occurred at reception, product dispensing, and during the final verification step. The topics of physical and mental fatigue, workplace cohesiveness, ways in which medication errors occur, strategies for mitigating errors, best practices for pharmacy workflow, and company policies and procedures were also addressed during a series of mini (8-minute) lectures. Following the lectures, teams of four consisting of both pharmacists and pharmacy technicians discussed examples of how they could improve their practice to reduce the occurrence of medication errors. These sessions were led by the same team of pharmacists on six occasions. Eighty pharmacists and 150 technicians from 20 different Kroger pharmacies completed the program. The pharmacies were classified as low, medium, or high volume based on their average number of prescriptions filled per week.

Comparisons of medication error occurrences before and after training and differences between the pharmacy categories were made. The ratios of pharmacists to certified pharmacy technicians and other demographic information was recorded. The results of the study are summarized in the tables below. There was a decrease in the number of errors overall and between the pharmacy classifications from pre and post-training but these differences were not statistically significant. The number of pharmacists and technicians based on pharmacy volume (low, medium, or high volume) was significantly different.  The authors concluded that the implementation of these live training programs helped streamline best practices and reiterate patient safety by focusing on medication error reduction.

Table 1: Pharmacy Characteristics




*Differences between groups p <0.01

Table 2:  Medication Error Rates at Baseline vs. Post-Training







This study is valuable because it highlights the fact that even in the most structured pharmacy practice systems, there is always room for improvement. It is also valuable because it shows the potential benefit of continuing education and analyzing medication error trends. I think more pharmacies should design programs similar to this one where pharmacists educate pharmacy technicians and other pharmacists on methods to decrease workplace fatigue and increase cohesiveness to decrease medication errors. The mean number of full-time pharmacists to certified technicians was 2:1 in low volume pharmacies and 2:2 in medium volume pharmacies. The mean number of errors in the medium volume pharmacies pre-live training was just over double the mean number of errors in the low volume pharmacies pre-training.  These results were interesting to me because they show that the number of pharmacists relative to pharmacy technicians may be an important factor in mitigating medication errors. It would be beneficial to employees and patients if the work environment was less stressful and had a smooth, structured workflow with a balanced workload. It is also valuable because it shows what difference can be made when the focus is put towards fixing systematic problems in the pharmacy instead of placing blame on individual employees.

A limitation of this study is the fact that it relied on the pharmacies to self-report the number of medication errors. Recall bias and underreporting of medication by pharmacies could give false confidence that the pharmacy made fewer errors after the training. It also failed to report a breakdown of the number of reported errors in each category before and after the training. This data would have been helpful to determine if the training is effective in minimizing a specific type of medication error. Another limitation is the fact that the pharmacies included in the study were all Kroger pharmacies and have similar policies and procedures.  Moreover, the pharmacists and technicians may not have had the freedom to make significant changes in the workflow or environment if it violated corporate policies. A sample including multiple chains and independent pharmacies would have provided a more accurate assessment of whether this training program leads to a reduction in medication errors and which kinds of practices benefit the most. A larger sample may have produced statistically significant results and more generalizable data. A longer observation period for data collection before and after the training would have increased the amount of data available to analyze and perhaps draw more precise conclusions. 

A similar study analyzed the impact of pharmacist-led training on the incidence of medication errors in an intensive care unit and post-surgical care unit.3 The educators in that program included a clinical pharmacist and a nurse.  The incidence of medication errors before and after the program, which included a lecture and ward-based hands-on instruction, remained high.  But the authors concluded that the program was effective because it changed the work environment to promote a safety culture. Another study published in the Journal of Pharmacy Technology evaluated the incidence of medication errors in the community pharmacy setting but collected data retrospectively.4 It attributed the number of reported medication errors to high prescription volumes and lack of adequate pharmacist coverage.  The authors concluded that increasing the number of pharmacists to accommodate the workload may help to minimize errors. The results of this study lead to a revision of pharmacy technician training requirements and certification in the state of New Hampshire. The results of these studies suggest that more work is needed to minimize medication errors and well-constructed training programs may be part of the solution.

Medication errors are expensive, harmful, and potentially deadly.  Live interactive training programs are a great method for delivering information.  I believe people are more likely to remember things when given the opportunity to interact with other participants and the instructor compared to when participants only hear or read about the material. More studies regarding the impact of live interactive training in community pharmacy are needed but the available data suggests they can make a difference in medication errors in pharmacy. Trial and error will be needed to figure out what elements are needed in the training sessions and whether periodic follow-up training should be implemented. Training sessions will also need to be adapted to fit different types and sizes of community pharmacies. Pharmacists should be aware of this study and similar studies so they can make informed decisions about employee training and different approaches to reduce medication errors. 

References:

  1. Medication Errors. AMCP.org. https://www.amcp.org/about/managed-care-pharmacy-101/concepts-managed-care-pharmacy/medication-errors. Published 2019.
  2. Grant M, Remines J, Nadpara P, Goode J. Impact of Live Training on Medication Errors in a Community-Based Pharmacy Setting. Innov Pharm. 2020;11(3):11. doi:10.24926/iip.v11i3.3291
  3. Nguyen H, Pham H, Vo D et al. The effect of a clinical pharmacist-led training programme on intravenous medication errors: a controlled before and after study. BMJ Qual Saf. 2013;23(4):319-324. doi:10.1136/bmjqs-2013-002357
  4. Pervanas H, Revell N, Alotaibi A. Evaluation of Medication Errors in Community Pharmacy Settings. Journal of Pharmacy Technology. 2015;32(2):71-74. doi:10.1177/8755122515617199