March 4, 2020

The Airplane Mode Classroom

by E. Ashton Smith, PharmD, PGY1 Pharmacy Practice Resident, Mississippi State Department of Health 

With today’s technology, people spend hours upon hours consumed with a screen every day. Whether it is scrolling on social media, shopping online, texting with friends, playing games, or watching the next episode of a favorite Netflix series, we are rarely disconnected from the internet. We can enjoy this media from our phones, laptops, tablets, televisions, and now even smartwatches. It can be a pleasant distraction.
Icons made by Freepik from www.flaticon.com
But let’s talk about distractions. Media available on the Internet and through our devices can be a good thing; for example, to pass the time during periods of boredom or to partake in a few enjoyable laughs from a friend’s text message. However, the distraction of constant notifications and the temptation to while away hours of time online can be harmful when there are other things at hand that are currently more important.

Devices in the classroom have become second nature to today’s college students. Laptops, cell phones, and tablets are brought into the classroom each day and can be beneficial for things such as note-taking and other class-related activities. These devices, however, can be a major distraction from learning and participation. In a recent study, the investigators surveyed college students in 26 states in the United States.1 Their sample included college freshmen all the way up to graduate students. The survey focused on the use of digital devices for non-class purposes in the classroom and the effects that usage may have on learning. Almost 97 percent of the participants admitted to using a digital device on a typical school day in the classroom for non-class related activities. The top two reasons (which were both reported by more than 50% of students) for using a device in the classroom were to stay connected and fight boredom. Although the students were choosing to use those devices during class time, it was not without realizing that it could hinder their learning. Nearly 90% of students admitted that the biggest disadvantage of using devices in the classroom was that it causes them to not pay attention.1 These results are from a survey conducted in 2016.  It seems likely device use would be even greater now in 2020, as the availability of social and video media online continues to skyrocket.

A study published in 2012 found that students who used their laptops during class scored an average of 11 percentage points lower in the course than the students who did not use their laptops.2 That is a whole letter grade! Not only does the laptop user become affected by non-class related internet usage during class, but the surrounding peers are also hindered by this distraction. In an experiment conducted in an undergraduate psychology class at McMaster University, half of the participants were instructed to use paper and pencil only to take notes during a lecture.3 The other participants were asked to use a laptop during the class session and were given tasks to complete on their computers during the lecture that was not related to the instruction. The students were given assigned seats and placed strategically around the room such that some students would have a view of other students using laptops, and others would have a distraction-free view. At the conclusion of the lecture, all participants completed a multiple-choice comprehension test with questions evaluating simple knowledge and application of the information presented during the lecture. Not only did the participants using the laptops perform significantly worse on the comprehension test but also the participants who had a view of a student with a laptop scored significantly lower than participants in the distraction-free zones.3 

Students know the negative consequence and yet still continue to use their devices during class. So, what is the solution? Some schools have explored the idea of disabling WiFi access in classrooms. Cornell University in Ithaca, New York has implemented the use of software to block access to WiFi while inside classrooms. This doesn’t, however, stop cellular signals, but it likely reduces media usage during class. Purdue University in West Lafayette, Indiana has restricted WiFi access throughout campus during class time hours. Streaming sites were completely banned in March 2019. Feedback from faculty has been positive, with one professor saying it has helped students who were previously distracted by other students streaming during class. The ban also challenged teachers at the university to develop class activities that engage students since more were actually paying attention in class!4 

Some classrooms have gone “tech-free.” Teachers in schools throughout the country have experimented with policies that prohibit students from bringing laptops, phones, and tablets into the classroom. A professor in the Department of Psychology and Neuroscience at Duke University tested this policy. She stated that the results were positive and students really loved it. Indeed, students in the tech-free class scored five percent higher on exams than previous semesters.5 

Another way to ease the students into using devices less frequently is to include “tech breaks” during class time. These five-minute breaks are sandwich between lecture segments during which students are allowed to pull out their phones and check social media, text messages, and emails. Students must pay close attention during lecture time to receive this privilege, however. For example, an hour-long class might have 30 minutes of lecturing, then five minutes for a tech break, before the second half of the class begins. This is a good way to not look like the bad guy, eliminating technology completely, and acknowledging how important students’ devices are to them.

Strategies to limit electronic device use in classrooms will continue to rise as the next generation of learners who are even more addicted to their devices enter college. While eliminating WiFI access and banding electronic devices continue to gain traction in schools, more pressure will be placed on teachers to use more engaging instructional strategies during class. Teachers need to explore ways to restructure class time. Ideas include more in-class small group activities, pop quizzes at the end of presentations, and inviting and interacting with guest experts. One of the most useful techniques is to chunk class time into brief activities, each focused on different learning objectives. These brief activities keep the students engaged and involved. Clearly, we need more research about the harms of technology addiction, how it hinders learning, and strategies to address it. 

References
  1. McCoy B. Digital distractions in the classroom phase II: student classroom use of digital devices for non-class related purposes. Journal of Media Education [Internet]. 2016; 7: 5-32. [cited 2020 February 10].
  2. Duncan D, Hoekstra A, Wilcox B. Digital devices, distraction, and student performance: does in-class cell phone use reduce learning? Astronomy Education Review [Internet] 2012; 11: DOI: 10.3847/AER2012011 [cited 2020 February 10].
  3. Sana F, Weston T, Cepeda NJ. Laptop multitasking hinders classroom learning for both users and nearby peers. Computers & Education [Internet]. 2013; 62: 24-31. [cited 2020 February 18].
  4. Smith M. Purdue University bans Netflix, other streaming services for students in academic buildings. The Washington Post [Internet]. 2019 March 15. [cited 2020 February 18].
  5. Gaither S. Why you should consider a tech-free classroom. Psychology Today [Internet]. 2019 September 23. [cited 2020 February 18].

February 11, 2020

Teaching Residents to Conduct Residency Research Projects … and Get Published


by Samuel O. Adeosun, PhD, PGY1 Pharmacy Practice Resident, St. Dominics Hospital

One of the requirements for successful completion of pharmacy residency is the completion of a data-driven project. This is a requirement under the American Society for Health-System Pharmacists (ASHP) accreditation standards for both PGY1 and PGY2 residencies. While most programs do not require that the project be submitted for publication in a peer-reviewed journal, they usually require that the project be written up in a standard manuscript format and submitted to the program director or committee.1 However, publishing residency research projects has several advantages. Publishing promotes visibility, for both the resident and the residency program, in the field and may attract collaborators who have similar interests. A published project also promotes a sense of accomplishment. Furthermore, the experience makes the publishing process less intimidating. Moreover, publishing residency research broadens career opportunities (even beyond academia) and early career publication success has been associated with faster career advancement.2,3 Very importantly, the dissemination of research findings is crucial as findings that are never published are of no value to the research community.  Even negative findings have value and should be disseminated. Unfortunately, despite the requirement and the many potential benefits, the publication rate for resident research projects since 1981 has been low and appears to be trending downward.4

There are many reasons why the publication rate is low including time limitations, knowledge gaps among residents and preceptors about conducting research, and lack of mentor support during or after the residency.5,6 Time is often considered a major problem because a 12-month residency is perceived to be too short to conduct a meaningful research study.6,7 However, perhaps the most important issue is that no time is specifically allocated for research or instruction about research in most programs. In one survey 80% of residency program directors (RPDs) agreed that research is important to make good patient care decisions but only 44% agreed there should be an equal emphasis on research as on clinical skills.5 Although some programs have a designated research month, research must be done longitudinally. Another important limitation is the lack of mentorship and support. Many preceptors are not well trained in research methods or are not motivated (or incentivized) to publish, especially in non-academic settings.8,9 Thus, for a new pharmacy graduate, conducting a research project is a daunting task because they lack the experience and the support and there is limited time allocated to conducting it. 

A well-designed strategy to address the training needs of residents to conduct research, while also providing sufficient guidance and time, was developed and implemented at the University of Utah in partnership with Intermountain Health.10 This involved the formation of a resident research committee (RRC) that included two clinical pharmacy specialists, two pharmacy administrators, and one drug information pharmacist. The committee provided oversight and assistance to residents so that they could achieve research goals and complete their projects by the end of the residency year. Before the arrival of the residents in June, the group distributed research overview, guidelines, and deadlines to the incoming residents. Residents were also encouraged to start thinking about their research topic and were scheduled to complete their institutional review board (IRB) training before the residency program started. During the first week of orientation, the RRC gave presentations on formulating research ideas and helped residents refine their ideas based on several factors including data availability, novelty, and alignment with institution initiatives. By the end of August, residents presented their research proposals to the department and data collection commenced after IRB approval. Residents were required to present preliminary results from their projects at a national professional meeting in December. The findings and analyzed results were presented to mentors in April. Preceptors’ feedback were incorporated before residents presented their final project to the department and at the residency conference in May. Finally, a manuscript was submitted to the RRC and residents were encouraged to submit their projects for publication. 

It is worth noting that the core elements of this instructional design is learner support and distributed effort. This is not just a deadline-driven program as support and learner feedback provided at every step. The support included helping residents to navigate the health system in order to get the resources and data they need. Also, the RRC enlisted the help of a statistician during the project development and data analysis stages. This is quite important as most residents (and preceptors) feel statistical analysis is daunting and a major barrier.7  Surprisingly, although only 1.5% of RPDs believe their residents have sufficient knowledge regarding statistical analysis, little to no training is provided during pharmacy residency programs and statisticians are not usually enlisted.11 

The approach developed and implemented by the University of Utah and Intermountain Health proved to be very effective. Within the four years since the program started, all the residents completed their research projects within the allotted 12 months, far more resident research papers were submitted to peer-review journals, and the anticipated publication rate increased to 31%. 

A similar approach adopted by Kaiser Permanente Colorado in partnership with the University of Colorado School of Pharmacy significantly improved residency research publication rates.  The residency research committee included personnel with specialized clinical research training (including PhDs).  The committee provided the residents with refined and ready-made research ideas and residents participated in an educational program with 18-hours of didactic instruction on research design. This approach increased the publication rate to 86.1% (previously 47%) and shortened the time to publication to 23 months (previously 30 months).15

Another important issue is the quality of the study design. A majority of RPDs and residents perceive this to be major barrier to publication.7 To address this problem, alternative approaches to research and scholarly activities have been suggested. These include conducting high-quality retrospective studies or writing comprehensive reviews that have much higher acceptance rates rather than performing time-consuming prospective studies that are unlikely to have generalizable results.12 Such an approach led to much higher publication rates (72-82%) in some residency programs.13,14 

Research is critically important to inform evidence-based practice and all pharmacy residents should receive training about how to conduct research. However, most residency training programs ignore best practices in instructional design and fail to teach residents how to conduct research.  Few programs provide instruction and ongoing support. Consequently, most residents never develop the interest and skills needed to conduct scholarly work and successfully publish their project results.8  Following an instructional design process based on clearly stated program goals and objectives, learner needs assessments, well-developed instructional materials, and ongoing learner feedback and support can significantly increase project completion and publication rates.

REFERENCES
1. Accreditation Standards for PGY1 Pharmacy Residencies - ASHP. https://www.ashp.org/Professional-Development/Residency-Information/Residency-Program-Directors/Residency-Accreditation/Accreditation-Standards-for-PGY1-Pharmacy-Residencies. Accessed February 8, 2020.
2. Vouri SM, Stranges PM, Burke JM, Micek S, Pitlick MK, Wenger P. The Importance of Research during Pharmacy Residency Training. Curr Pharm Teach Learn. 2015;7(6):892-898. doi:10.1016/j.cptl.2015.08.018.
3. Stranges PM, Vouri SM. Impact of resident research publication on early-career publication success. Am J Health Syst Pharm. 2016;73(12):895-900. doi:10.2146/ajhp150567.
4. McKelvey RP, Hatton RC, Kimberlin CA. Pharmacy resident project publication rates and study designs from 1981, 1991, and 2001. Am J Heal Pharm. 2010;67(10):830-836. doi:10.2146/ajhp090090.
5. Weathers T, Ercek K, Unni EJ. PGY1 resident research projects: Publication rates, project completion policies, perceived values, and barriers. Curr Pharm Teach Learn. 2019;11(6):547-556. doi:10.1016/J.CPTL.2019.02.017.
6. Bookstaver PB, Felder TM, Quidley AM, Ragucci K, Nappi J, Draper HM. Pharmacy residents’ barriers to scholarly pursuits. Curr Pharm Teach Learn. 2015;7(1):40-46. doi:10.1016/J.CPTL.2014.09.003.
7. Irwin AN, Olson KL, Joline BR, Witt DM, Patel RJ. Challenges to publishing pharmacy resident research projects from the perspectives of residency program directors and residents. Pharm Pract (Granada). 2013;11(3):166-172. http://www.ncbi.nlm.nih.gov/pubmed/24223082. Accessed August 31, 2019.
8. Ellis JJ, McCreadie SR, McGregory M, Streetman DS. Effect of pharmacy practice residency training on residents’ knowledge of and interest in clinical research. Am J Heal Pharm. 2007;64(19):2055-2063. doi:10.2146/ajhp070063.
9. Stranges PM, Vouri SM. Impact of co-investigators on pharmacy resident research publication. Pharm Pract (Granada). 2017;15(2):928. doi:10.18549/PharmPract.2017.02.928.
10. Dick TB, Moorman KL, MacDonald EA, Raines AA, Cox KDM. Defining and implementing a model for pharmacy resident research projects. Pharm Pract (Granada). 2015;13(3):562. doi:10.18549/PharmPract.2015.03.562.
11. Newsome C, Ryan K, Bakhireva L, Sarangarm P. Breadth of Statistical Training Among Pharmacy Residency Programs Across the United States. Hosp Pharm. 2018;53(2):101-106. doi:10.1177/0018578717746416.
12. Barletta JF. Conducting a successful residency research project. Am J Pharm Educ. 2008;72(4):92. doi:10.5688/aj720492.
13. Cabanas G, Bridgeman MB, Hermes-DeSantis ER. Publish or perish: Success with publication in pharmacy residency training. Curr Pharm Teach Learn. 2018;10(12):1647-1651. doi:10.1016/J.CPTL.2018.08.017.
14. Hasegawa GR. Publication of residency projects: Another perspective. Am J Heal Pharm. 2012;69(1):77-78. doi:10.2146/ajhp110525.
15. Olson KL, Irwin AN, Billups SJ, Delate T, Johnson SG, Kurz D, Witt DM. Impact of a clinical pharmacy research team on pharmacy resident research. Am J Heal Pharm. 2015;72(4):309-316. doi:10.2146/ajhp140214.