December 2, 2018

Spiral Integration in Pharmacy Education

by Hanson Walker, Pharm.D., PGY1 Community Pharmacy Resident, University of Mississippi School of Pharmacy


As new medications, therapies, and healthcare practices are constantly evolving, there is an increasing need to develop a curriculum that allows students to not only acquire foundational knowledge but also learn how to most effectively put this knowledge into practice.  Pharmacy and other health professional schools must constantly evaluate and adapt their curricula to best fit both the volume and breadth of information that must be disseminated and the changing learning preferences of each new generation of learners.  Changing an entire curriculum is certainly a major undertaking; however, it can be accomplished using principles of curricular design.

While learning often occurs by starting with the most foundational information and building towards the full scope of knowledge needed by a practitioner, when designing a curriculum one must start with the end in mind and reverse the process (aka backward design).  If we start with a long list of all the discrete bits of knowledge a healthcare professional needs to know and attempt to incorporate them as we move forward in the curriculum, the result will be a disheveled mess with no demonstrable flow and likely poor learning outcomes. On the other hand, if the overall structure is established at the inception of the curriculum, deciding first what the practitioner must be able to do, and then assembling the bits and pieces that together form the profession’s knowledge base, it can then be integrated throughout the curriculum.  But how? How can we best integrate the plethora of information into a cohesive whole that prepares students for their future careers?


Integration of knowledge has long been a goal of curriculum developers, and this integration has historically occurred across two dimensions.  The first, horizontal integration, includes multiple topic areas (for example, pharmaceutics, pharmacology, medicinal chemistry, pharmacotherapeutics) whereby instructors deliver material related to the topic (e.g. a disease state) in parallel.  Thus similar-level material in each of the subjects is taught concurrently.  This approach can take many forms ranging from multidisciplinary (each discipline works separately), to interdisciplinary (commonalities between disciplines are leveraged to reach a common understanding of a topic), and transdisciplinary (disciplines are so interwoven as to be nearly indistinguishable).  The second, vertical integration, involves the introduction of increasingly complex material across time, where students are presented with basic, foundational knowledge and concurrently introduced to related clinically-oriented foundational experiences in order to bridge the gap between theory and practice.  The complexity of theory and practice experience build over time.  Spiral integration fuses these two concepts together.

In spiral integration, horizontal and vertical integration are merged to form a metaphorical spiral.  In theory, basic concepts are revisited with increasing complexity at various touchpoints throughout the curriculum.  This allows new knowledge and ideas to be correlated with previously learned concepts.  But, there are challenges to the implementation of such an approach. Overcoming these challenges requires both foresight by the curriculum designers and effective implementation by the faculty.

Let’s take a look at a concrete example of how spiral integration might be implemented.  At its core, spiral integration is basically a curriculum structure that involves the layering of concepts from multiple disciplines, with the complexity of the information increasing with each passing year.  In this type of curriculum, basic and clinical sciences are interwoven from the beginning, allowing the student to understand the relationships between pharmaceutics, medicinal chemistry, pharmacology, pharmacotherapeutics, as well as the social and administrative sciences.   Let’s take a closer look at how a specific instructional approach could be spirally-integrated.  Problem-based learning (PBL) is a common teaching methodology within healthcare education, and, like many other educational strategies, it can be used throughout a spirally-integrated curriculum.  PBL cases would be used beginning in the first year of pharmacy school, yet these cases would not focus heavily on therapeutic knowledge that the students have yet to develop but rather on social determinants of health, nonadherence, and healthcare communication.  In this way, students are introduced to some foundational concepts without being overwhelmed by the breadth of knowledge expected of a pharmacist.  Once students progress to the second year, concepts related to therapeutics would be included in patient cases, while reinforcing previously covered concepts learned within the curriculum.  During the third year, students would be given increasingly complex cases with greater emphasis on more complicated aspects of care.  Finally, in the last year of the curriculum, students progress from the fabricated cases to the real-world experiences (aka advanced practice experiences), where all of the knowledge they have gained is put into practice.


Given the seemingly clear benefits of a spirally-integrated curriculum, it would seem that this type of structure would basically be educational canon, but it is not without controversy.  Detractors may argue that while there is significant theoretical value for spiral integration, there is little evidence to support its effectiveness.  This is at face value a true statement, but it is nonetheless a misleading one, as the lack of evidence is in large part due to the difficulty of performing such a study rather than any substantial reasoning or evidence against the concept.  On the other hand, evidence shows that students in an integrated curriculum exhibit heightened retention of foundational information and improved application of learned material to real-world practice.  Due to this combination of theoretical soundness and evidence (albeit limited), integration across domains of knowledge with increasing complexity over time increases our chances of producing graduates ready to enter the workforce as well-informed, competent practitioners.


References

Rockich-Winston N. Toward a pharmacy curriculum theory: spiral integration for pharmacy education. International Journal of Medical Education 2017;8:61–2.

Husband AK, Todd A, Fulton J. Integrating science and practice in pharmacy curricula. Am J Pharm Educ 2014;78(3):Article 63. 

Pearson ML, Hubball HT. Curricular integration in pharmacy education. Am J Pharm Educ 2012;76(10):Article 204.

Schwartz AH, Daugherty KK, O’Neil CK, et al. A curriculum committee toolkit for addressing the 2013 CAPE outcomes. Curriculum SIG Writing Group. 2014.

November 28, 2018

Life-Long Learning - Not Just Content Expertise but Teaching Strategies Too

By Rachel Rossi, PharmD, PGY1 Pharmacy Practice Resident, Magnolia Regional Health Center

At every stage of my education, a variation of the same refrain surfaced over and over again: you must become a lifelong learner! As a young student, it really didn’t seem relevant to me as I was only concerned about the present class, academic year, or course of study. However, as a new graduate and licensed professional, I now have continuing education requirements and “life-long learning” has new meaning for me. While continuing education is a requirement, it is important to keep up with the up-to-date practices and ideas in your field of study.  Most pharmacists think about learning about new drugs on the market and the latest treatment guidelines from the premier healthcare societies. But what life-long learning related to other professional responsibilities?



As a resident, for the first time, I have had the opportunity to precept pharmacy students. This responsibility has opened up my eyes to the challenges my professors must feel keeping students engaged while (simultaneously) ensuring all the most important information is adequately covered. Which teaching method(s) should be used? Should instructors go the traditional route, in which concepts are shared directly through written materials or a lecture, or through learner-centered activities? While the traditional methods are comfortable in that the instructor maintains all of the control and knows what will be covered, the students don’t always benefit from that teaching style. Thus, the emergence of student-centered learning. So, if student-centered learning is desirable, why don’t more professors use it in their classrooms? Although resources and time are certainly important variables, lack of exposure to new and creative ways of teaching may be an explanation for some. For teachers, continuing education in their subject matter is important but keeping up with the latest teaching methods is also essential.

The On the Cutting Edge Program is a national program established in 2002 for the purpose of bringing together geoscience undergraduate faculty to share teaching strategies and research as well as provide seminars and workshops for teachers to actively learn about new teaching tools.1,2  These workshops serve as resources for teachers in the science field to learn from each other and gain insight into new teaching practices. From 2002 to 2012 over 2000 faculty and 800 postdoctoral fellows and graduate students have participated in the On the Cutting Edge program which included over 100 workshops and professional development events.3

Researchers measured the impact of the On the Cutting Edge Program on geoscience faculty, focusing on four questions: 1) Has there been a measurable change in undergraduate geoscience instruction moving from teacher-centered lecture to student-engaged teaching practices? 2) What role does learning about teaching play in supporting these pedagogical changes? 3) Is faculty participation in Cutting Edge associated with increased use of student-engaged teaching practices? 4) What impacts do participants recognize as coming from the workshops?3 In order to assess these questions, 120 participants from the On the Cutting Edge program were interviewed at several time points.  In addition, nationwide surveys were sent to 10,000 geoscience faculty in 2004, 2009, and 2012. Each of these surveys garnered over 2000 responses from faculty from both four-year and two-year institutions.

Although the survey respondents were not all participants in the program, several general conclusions were drawn from the data collected. Teaching strategies were categorized by estimated class time spent on interactive activities, questions, and discussion.  If greater 20% of class time spent on these activities, the class session was considered student-centered learning. The frequency of utilizing these strategies was also measured, and teaching styles were categorized as frequent use if the strategy was used on a weekly basis or in nearly every class or infrequent use if it was never used or used once or only several times.

The research found there was an increase in student-centered teaching strategies from 2004 to 2012 based on the results of the survey data.  Faculty who were “education-focused” (those who reported significant activity related to improving teaching) showed more frequent use of student-centered learning strategies compared to faculty who were “research-focused” (those who reported significant geoscience research activity).3 These findings are important because it correlates continuing education for teachers who moved toward more student-engaged classroom experiences.

In addition, the researchers compared the teaching strategies of survey respondents that participated in the On the Cutting Edge program to those that did not. They found that participants in the program workshops and those who use the website were 1.5 times more likely to spend at least 20% of class time on student-centered strategies compared to respondents that did not participate in the workshops or use the website. They were also able to show that no matter what faculty member classification (e.g. education-focused or research-focused) those that attended a workshop or used the website were more likely to use student-centered strategies than those that did not.3

The conclusions drawn in this study are important for both faculty and healthcare practitioners that precept students. While keeping up with the most up-to-date information in your content area/discipline is necessary, it is also important to know how to engage students with the material. Most healthcare professionals have not had formal courses on how to be a teacher or faculty member, so engaging in workshops and seminars on how to bring innovative teaching skills to the classroom is especially important. For faculty who exclusively use traditional methods, are they lifelong learners? Are they seeking opportunities to learn new things about teaching?  This study highlights that even experts in a field can gain for continuing education experiences related to teaching strategies and class organization. As part of the self-evaluation that accompanies lifelong learning, I believe finding and using programs like the On the Cutting Edge should be part of the teachers’ repertoire to continually strive to be a better teacher. Only by reassessing current practices and seeking out new ideas can the best educational opportunities be created.

References:

  1. SERC. About the On the Cutting Edge Program. (SERC, 2018); available from: https://serc.carleton.edu/NAGTWorkshops/about/index.html 
  2. SERC. Overall Philosophy of Cutting Edge Workshop Design. (SERC, 2016); available from: https://serc.carleton.edu/NAGTWorkshops/about/design.html 
  3. Manduca CA, Iverson ER, Luxenberg M, et al. Improving undergraduate STEM education: The efficacy of discipline-based professional development. Sci. Adv. 2017;3: e1600193.  Available at:  http://advances.sciencemag.org/content/3/2/e1600193.ful