November 24, 2020

Group-based Education for Self-Management of Type 2 Diabetes Mellitus

by Olivia Husband, Doctor of Pharmacy Candidate, University of Mississippi School of Pharmacy

Summary and Analysis of: Rygg LØ, Rise MB, Grønning K, Steinsbekk A. Efficacy of ongoing group based diabetes self-management education for patients with type 2 diabetes mellitus. A randomised controlled trial. Patient Education and Counseling. 2012 Jan;86(1):98–105.

Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent disease states worldwide, and it is projected that the number of people diagnosed with T2DM will continue to increase over the next decade.1 As a student pharmacist, T2DM is something I am interested in, not only because of its high prevalence but the impact a pharmacist can have on the management of people with T2DM. An integral component of T2DM treatment is patient self-care and management, including self-monitoring blood glucose and self-administering insulin injections. Patient education is crucial in ensuring that patients are getting the greatest benefit out of their diabetes treatment regimen. The authors of this study state there was very little evidence regarding the efficacy of local, group-based T2DM education.1

This randomized controlled trial was conducted from May 2006 to November 2008 in central Norway. Participants were patients age 18 or older with a physician confirmed diagnosis of type 2 diabetes mellitus who had at least one general practitioner consultation within the previous three years.1 There was no specific A1C requirement to enter the trial; however, patients who previously attended a diabetes education program in the past 12 months were excluded from the study.1 Twenty general practitioners in the local area were asked to evaluate their patients to identify those who met the inclusion criteria for T2DM group education and then to mail out an invitation to participate in the diabetes management course.  Patients who accepted the invitation were then interviewed and randomized into one of two groups: the intervention group, which consisted of two cohorts, hospital 1 and hospital 2, and a control group.1 The intervention group cohorts attended 15 hours of T2DM education delivered over three class sessions. The members of the control group were told they would be placed on a waiting list and would be offered the education program after one year.  Control group patients were instructed to continue their self-management practices.1 The intervention received education about T2DM as well as nutrition taught by a diabetes nurse educator who had several years of experience. The education methods used included lectures, interactive skills training with activities, including blood glucose monitoring and problem-solving activities, and group discussion.1 The primary outcomes of the study were changes in A1C (a measure of long-term blood glucose control) as well as patient response to a questionnaire that assessed their knowledge.  The outcomes were measured at baseline, at 6 months after the education program, and again at 1-year post-program.1 The results were analyzed using both per protocol and intention to treat analysis.1

There were no statistically significant differences between the intervention and control groups in regards to primary outcomes at 6 months.1 But, after 1 year, the control group had a worsening of their A1C level from baseline of 0.3% while the intervention group maintained their baseline A1C (p=0.032).1 All groups improved their diabetes knowledge after 12 months, but the patients in the intervention group significantly greater improvements in diabetes knowledge when compared to the control group.1 The intervention group also had a higher level of treatment satisfaction at 6 months, but not at 12 months.1 There was also a significant increase in the number of participants who avoided fatty foods and regularly self-monitored their blood glucose (p=0.027) among members of the intervention group.1 Although the intervention group improved their knowledge of self-management of T2DM, their quality of life decreased from baseline over the course of 12 months (p=0.005).1 This was not the case for the control group, as their quality of life scores remained unchanged when compared to baseline.1 I think the decline in quality of life in the intervention group might be due to the more intensive monitoring and, ironically, with greater knowledge, more anxiety about the negative effects of diabetes.

Many of the participants in the study had a baseline A1C that was below the recommended treatment goal, and this is a major limitation of this study. To offset this limitation, a sub-group was performed for the subset of patients with an A1C greater than 7.7% at baseline.1 These participants had poorer glycemic control at baseline, so they reaped the most benefit from the T2DM education program. One way the investigators could have prevented this limitation is to have a baseline A1C requirement for participants to enter the study. I think it is important to note the general decline in patient quality of life within the year following the education program perhaps due to more stress and anxiety related to the management of their T2DM. The program consisted of 15 hours of education across 3 sessions which are very long sessions and it’s hard to absorb that much information. This could have been avoided if the 15 hours was separated into more sessions. The sessions themselves seemed to use an effective combination of lectures, activities, and discussions, with breaks provided for participants.1 I think overall, the methods of this study were appropriate because the investigators measured both glycemic control as well as patient knowledge after attending the classes.  However, I think they should have scheduled shorter sessions and perhaps included sessions about stress reduction strategies.

Several studies have analyzed the benefits of providing group-based type 2 diabetes management education and most have produced positive results. Participants saw an improvement in their glycemic control.  In one analysis patients were more likely to see improvement when the program was taught by a pharmacist rather than a different healthcare professional.2 In most other studies, participants also saw an improvement in their overall quality of life, which was not seen in this study.1-3 

This study shows that patient education about type 2 diabetes mellitus and self-care is an essential element of its management. This study reinforces the importance of patient education while providing insight on how to structure it. Learning how to manage a disease can be overwhelming, so it is important to address the stress and anxiety that can occur.

References

  1. Rygg LØ, Rise MB, Grønning K, Steinsbekk A. Efficacy of ongoing group based diabetes self-management education for patients with type 2 diabetes mellitus. A randomised controlled trial. Patient Education and Counseling. 2012;86:98–105.
  2. Mikhael EM, Hassali MA, Hussain SA. Effectiveness of diabetes self-management education programs for type 2 diabetes mellitus patients In middle east countries: A systematic review. Diabetes Metab Syndr Obes. 2020;13:117-138.
  3. Kumah E, Sciolli G, Toraldo ML, Murante AM. The diabetes self-management education programs and their integration in the usual care: A systematic literature review. Health Policy 2018;122:866–77.

November 16, 2020

Pharmacist-Led Educational Interventions Decrease Prescribing Errors

by Michaela Shoup, Doctor of Pharmacy Candidate, University of Mississippi School of Pharmacy

Summary and Analysis of: Winder MB, Johnson JL, Planas LG, Crosby KM, Gildon BL, Oberst-Walsh LA. Pharmacist-led educational and error notification interventions on prescribing errors in family medicine clinic. J Am Pharm Assoc 2015; 55(3): 238-45. doi: 10.1331/JAPhA.2015.14130

Medication errors are a serious problem in the United States’ healthcare system. Studies have shown that medical errors account for over 250,000 deaths every year, making medical errors the third leading cause of death in the United States. Reducing prescribing errors is a vital step in decreasing the number of patients harmed and improving outcomes.  Another issue plaguing healthcare in the United States today is the lack of available positions for pharmacists and the failure of many healthcare professionals to fully realize the value and knowledge pharmacists can bring to the healthcare team. In this study to evaluate the impact of pharmacist-led educational and error notification interventions on prescribing errors in a family medicine clinic, the researchers created a program that addresses both of these issues at once. This study showed that physicians made fewer errors when writing prescriptions for pediatric patients after participating in a pharmacist-led educational program.1

This 14-month study took place in an outpatient academic family medical clinic affiliated with the University of Oklahoma. Of the twenty-four resident physicians at the clinic, fourteen residents participated in the educational program and their prescribing habits were longitudinally assessed. The study was composed of four phases: preintervention error assessment, educational intervention, error notification intervention, and postintervention error assessment. First, prescriptions written by the resident physicians were assessed for the number and types of errors they contained, including missing information such as date, unclear directions, or incorrect dose. The researchers used multiple instructional methods to educate the residents. First, they employed a pharmacist-led lecture with active learning activities in which residents learned about the most common types of prescription errors, how to effectively use an electronic medical record (EMR), and the necessary elements of a prescription. In the error notification intervention, pharmacists used a feedback system for a period of three months to help the residents see what strengths they had and what areas they should improve. As a part of this feedback system, residents received notification of errors in prescriptions they had written and were offered assistance from clinical pharmacists. Residents also received a weekly newsletter summarizing the most common errors made and providing recommendations for improvement. The feedback and audit system likely played a vital role in training these physicians— feedback enables learners to gain perspective from others on how they can change and improve. A year after the initial data collection began, the postintervention assessment was conducted. A new set of prescriptions written after the conclusion of the program was assessed for errors to see if and how the residents’ prescribing practices had improved.

The results showed that the rate of prescribing errors was 23% lower during the postintervention period when compared to the preintervention period.  However, this difference was not statistically significant when controlling for time. The lack of statistical significance could be due to each resident having different baseline knowledge and experience. For example, the more experienced residents may not have benefitted from the program as much as the less experienced physicians, and this may have diminished the impact of the educational intervention. In addition to the primary analysis, the researchers analyzed the error rates of residents who participated in the educational program compared to those who did not. Controlling for time, pediatric prescription error rates were 36% lower among physicians who participated in the educational intervention versus those who did not participate. This difference was statistically significant, and the authors concluded that the prescribing of pediatric medications was positively impacted by the program.

This study aimed to show the value of pharmacists’ knowledge and expertise.  While the results are promising, the Hawthorne effect could have played a role in the results — physicians could have changed their prescribing habits simply because they knew they were being evaluated, possibly leading to a lower error rate than might have been seen had the physicians been unaware their performance was being evaluated. The study group was diverse—it was comprised of PGY1 through PGY4 residents.  So each physician had a different level of experience. The residents received uniform education and feedback, which is a strength of the study. However, we do not know which of the individual components of the program – the lecture, audit and feedback, or the newsletter – had the most impact.  Indeed, we don’t know if the residents actually read the newsletter.

Other studies have been conducted to show that pharmacist-led education positively impacts prescribing practices and, ultimately, the quality-of-care patients receive. The DEPRESCRIBE study evaluated the effect of a pharmacist-led educational invention on discontinuation of medications that were inappropriate for patients aged 65 and older (based on Beers criteria).2 Pharmacists in this study provided education to patients (supplemented by educational brochures) and made pharmacological recommendations to their providers regarding medications that may be more harmful than beneficial in older adults. Over 40% of the potentially harmful medications were discontinued by the physicians that were educated by the pharmacist.  This substantially greater than the discontinuation rates (12%) observed when the patients and physicians were not educated.

In a time when an alarming number of patients are being by less-than-optimal medication regimens and when job positions for pharmacists are not as plentiful as they once were, pharmacists must use their training to improve patient outcomes and make their value evident. Pharmacists are capable of educating both their coworkers and patients to decrease error rates, provide high-quality patient care, and improve health outcomes. Pharmacists are in the ideal position to share their knowledge and expertise to benefit patients, colleagues, and the profession of pharmacy. 

References:

  1. Winder MB, Johnson JL, Planas LG, Crosby KM, Gildon BL, and Oberst-Walsh LA. Impact of pharmacist-led educational and error notification interventions on prescribing errors in a family medicine clinic. J Am Pharm Assoc 2015; 55(3): 238-245. doi:10.1331/japha.2015.14130
  2. Martin P, Tamblyn R, Benedetti A, Ahmed S, Tannenbaum C. Effect of a Pharmacist-Led Educational Intervention on Inappropriate Medication Prescriptions in Older Adults: The D-PRESCRIBE Randomized Clinical Trial. JAMA. 2018; 320(18): 1889-1898. doi: 10.1001/jama.2018.16131.

November 13, 2020

Prescribing Education for Medical Students

by Danielle McGrew, Doctor of Pharmacy Candidate, University of Mississippi School of Pharmacy

Summary and Analysis of: Newby DA, Stokes B, Smith AJ. A pilot study of a pharmacist-led prescribing program for final-year medical students. BMC Med Educ. 2019 Feb 12;19(1):54. doi: 10.1186/s12909-019-1486-1 

I love to find articles in the literature focused on ways pharmacists have implemented a program, educated others, or proven their worth while working on an interprofessional team. So, when I came across an article about a pharmacist-led educational program that benefited patients and prescribers alike, I was immediately intrigued.  The purpose of this study was to improve prescribing confidence and skills and to improve medical students’ understanding of the role pharmacists can play in the management of patients. It is known that prescribing medications is one of the intimidating tasks for medical students as they transition to becoming licensed physicians. One study found that recent medical school graduates did not feel prepared for prescribing in clinical practice, which they attributed to a lack of opportunities to develop the skill-based, applied aspects of prescribing.1  Other studies have shown that medical interns often prescribe inappropriately for many common conditions.2 Thus, there is a need for more training and practice opportunities for medical students to prepare them for clinical practice.


In this study conducted in Australia, all final-year medical students at three tertiary hospitals were invited to take part in an eight-week prescribing training program. The program consisted of three instructional strategies: prescribing and calculation tutorials, weekly feedback from a pharmacist regarding prescribing, and one afternoon spent in the pharmacy to learn about and observe the dispensing process. The tutorials involved allowing the students to practice either selecting and prescribing medications or calculating and prescribing a dose of a medication based on a case scenario representing the most common conditions faced by junior doctors. The common conditions included stroke prevention (anticoagulation therapy), diabetes, pain management, constipation, nausea and vomiting, asthma, and hypertension. Confidence and appropriateness of prescribing were measured upon completion of the tutorials on week one and week eight. Confidence in a variety of prescribing areas was assessed using a confidence scale adapted from a questionnaire developed by the TOPDOC study team to rate junior doctor confidence.3 The tutorials covered such topics as selecting a medication for a condition, writing a prescription order for both inpatients and outpatients, taking a medication history, identifying potential drug interactions and adverse events, monitoring effectiveness, and planning discharge medications.  To assess the appropriateness of prescribing, the students completed a prescribing exercise based on a clinical scenario. Blinded to what student was completing the exercise and to whether it was a pre- or post-assessment, a clinical pharmacist and clinical pharmacologist assessed the appropriateness of each prescription using a previously validated scale. Additionally, students provided feedback about the impact of the program at the completion of the program by participating in focus groups and completing a questionnaire. Pre- and post-program assessments were examined using permutation tests, which assesses whether two distributions are significantly different from each other without making any assumptions about the shape of the distributions.

Twenty-three students completing their rotations at three hospital sites agreed to participate, with only 16 participating in most or all of the required activities and taking the pre- and post-course questionnaires and assessments. Results showed a significant increase in confidence across all areas of prescribing skills assessed. At baseline, a majority of students rated themselves as ‘not confident’ or ‘satisfactory but lacking confidence’ in each area, but upon completion of the program none of the students rated themselves as ‘not confident’ in any area, with the exception of one student that rated him/herself as ‘not confident’ in writing an outpatient prescription. The most noteworthy improvement was found in writing inpatient prescriptions – after the program, all students rated themselves as ‘confident in most cases but would like more experience’ or ‘fully confident in most cases.’  None of the students rated themselves ‘fully confident’ at baseline. Students were most confident in writing prescriptions for medications related to the disease states discussed in the tutorials.

There was a small and non-significant improvement in the appropriateness of the students’ prescribing from baseline to week eight. However, it is important to note is that none of the students’ prescriptions were rated ‘inappropriate and potentially harmful’ after finishing the prescribing program. Student feedback was uniformly positive, with students agreeing or strongly agreeing to statements about the practical aspects of prescription writing, therapeutic appropriateness, and calculations aspects of the program.  Also, students indicated that the program helped to prepare them for their intern year. The focus group sessions revealed that students most valued the practice and immediate feedback they received.  Moreover, they learned about the support pharmacists can provide to them as prescribers. Negative comments centered on the difficulty of fitting the program into their schedule during demanding clinical rotations.

I thought that this was a good study to evaluate how influential a prescribing program may be on medical student’s knowledge and confidence in writing prescriptions. One major weakness was the small sample size. Larger studies would be needed to quantify the impact of such a program on prescribing appropriateness. Given the small sample size, assessing changes in student confidence was the most appropriate thing to measure. A major strength of the program was the immediate feedback that was provided to the medical students. I also think that the use of focus groups to gather feedback was really important, especially since this was a pilot program.

Other studies focusing on prescribing education for medical students have shown positive results as well. Medical students participating in a ‘near-peer’ prescribing education program reported increased confidence in their prescribing knowledge and skills after attending the tutorials.4 Similarly, results from medical students participating in a teaching program on practical prescribing showed that their knowledge of pharmacotherapy, drug information, and prescribing skills was significantly improved.5

Educators should pay attention to this pilot study it appears to be a well-designed educational program intended to improve the confidence and skills of future physicians. In particular, I would recommend educators replicate the content of the tutorials and providing immediate feedback. In this instance, medical students are getting to practice real-life scenarios using clinical cases. I believe the best practices of instructional design are being upheld. The material is presented in the form of tutorials, the instructor tests the student’s knowledge on what has been taught through the clinical cases, and students can reflect on their performance based on immediate feedback. Educators should take into account the challenges of offering this program due to time constraints during demanding clinical rotations. My recommendation would be to initiate the prescribing program earlier in the medical school curriculum (perhaps during an early practice experience) and to reduce the weekly workload required. One medical school has already implemented “Safe Prescribing Teaching” earlier in their curriculum, resulting in students feeling remarkably more confident in prescribing situations.6 This strategy allows students to revisit and build on the knowledge they learn each week and would likely yield even better results.

 References

  1. Rothwell C, Burford B, Morrison J, et al. Junior doctors prescribing: enhancing their learning in practice. Br J Clin Pharmacol. 2012 Feb;73(2):194-202. doi: 10.1111/j.1365-2125.2011.04061.x. PMID: 21752067; PMCID: PMC3269578.
  2. Pearson S, Smith AJ, Rolfe IE, Moulds RF, Shenfield GM. Intern Prescribing for Common Clinical Conditions. Adv Health Sci Educ Theory Pract. 2000;5(2):141-150. doi: 10.1023/A
  3. George JT, McGrane DJ, Warriner D, et al; TOPDOC Study Team. Protocol for a national audit on self-reported confidence levels, training requirements and current practice among trainee doctors in the UK: the Trainees Own Perception of Delivery of Care in Diabetes (TOPDOC) Study. BMC Med Educ. 2010 Jul 27;10:54. doi: 10.1186/1472-6920-10-54.
  4. Gibson KR, Qureshi ZU, Ross MT, Maxwell SR. Junior doctor-led 'near-peer' prescribing education for medical students. Br J Clin Pharmacol. 2014 Jan;77(1):122-9. doi: 10.1111/bcp.12147. PMID: 23617320; PMCID: PMC3895353.
  5. Javadi MR, Khezrian M, Sadeghi A, Hajimiri SH, Eslami K. An Interprofessional Collaboration between Medicine and Pharmacy Schools: Designing and Evaluating a Teaching Program on Practical Prescribing. J Res Pharm Pract. 2017 Jul-Sep;6(3):178-181. doi: 10.4103/jrpp.JRPP_17_16. PMID: 29026844; PMCID: PMC5632939.
  6. Lloyd N. Pharmacist-led teaching as a longitudinal theme for medical school curriculums - a solution for reducing prescribing errors in junior doctors? BMC Med Educ. 2019 May 29;19(1):173. doi: 10.1186/s12909-019-1632-9.

November 6, 2020

An Apple a Day: A Parental Education Program to Reduce Childhood Obesity

by Trenton Goff, M.S., Doctor of Pharmacy Candidate, University of Mississippi School of Pharmacy

Review and Summary of:  Gomes AI, Barros L, Pereira AI, Roberto MS. Effectiveness of a parental school-based intervention to improve young children's eating patterns: a pilot study. Public Health Nutr. 2018 Sep;21(13):2485-2496.

The percentage of children and adults who are obese continue to climb in the United States and worldwide.  The World Health Organization (WHO) estimates that obesity has nearly tripled since 1975, with more than 650 million adults considered obese and 1.9 billion adults overweight in 2016.  Moreover, 38 million children under the age of 5 were considered obese in 2019.1 As a student pharmacist, I am interested in weight management because so many chronic illnesses are the result of obesity.  There are diet pills and weight loss drugs aplenty, but medications are generally NOT the healthiest options.2 While obesity may be a physical sign of disease, the real problems lie in the harmful metabolic changes that develop after weight gain, and children are not immune.  Young children depend on their parents, or guardians, to provide them with daily meals and nutrition.  A recent study conducted in Portugal caught my eye because the researchers created a school-based parental education program to improve children’s eating patterns and behaviors.3 Targeting and educating individuals, adults and children, before the onset of chronic complications, is the best chance we have at combating the obesity epidemic.  Giving parents the tools necessary to make healthy dietary choices for their children would be a step in the right direction.  Developing healthy eating habits early in life can have an impact on the rest of a child’s life.


In this longitudinal cohort study, parents of children 3-to 6-year-old who attended a public kindergarten were assigned to one of three groups: Complete Intervention Group (CIG), Minimal Intervention Group (MIG), and a Control Group (CG).  In the CIG, the primary instructional intervention was the “Red Apple” curriculum, which consisted of 90-minute educational sessions every other week for a total of four sessions.  These sessions focused on the young child’s growth and development, nutrition guidelines, and strategies for parents to promote healthy eating behaviors in their children.  In addition to the in-person instruction, the CIG was also given “homework assignments” to practice what was learned and a weekly newsletter was distributed to parents.  The MIG was provided with only one nutritional counseling session, one “homework assignment”, and one follow-up newsletter.  The CG was given no nutritional or behavioral instruction. All parents completed a series of evaluations and surveys at baseline.  Parents were evaluated on their self-efficacy in promoting healthy food intake, their ability to rate their child’s current weight against CDC standards, their nutritional knowledge, and recognize the healthy and unhealthy eating habits of their children.  The initial evaluations were meant to provide a baseline for follow-up analysis upon completion of the intervention.

Immediately following, 6-months, and 1-year after the educational program, parents in the three groups completed the same surveys they were given at baseline.  Nutritional knowledge and parent self-efficacy improved in both the CIG and MIG at the conclusion of the intervention and these improvements persisted 1 year later.  Conversely, nutritional knowledge and parental self-efficacy actually decreased in the CG during the same assessment periods.  Healthy food intake also increased in the CIG at the completion of the intervention, but the improvement did not persist at the six-month and one-year follow-up assessments.

This study, and the “Red Apple” curriculum, was very comprehensive.  The authors provide a detailed account of their intervention and results and clearly discuss the limitations and barriers that were observed in their study.  Participant recruitment and attrition, for instance, were key issues that resulted in a smaller than expected sample size in the intervention group.  The curriculum was well developed and could be used in other settings.  The curriculum included group discussions after each session and at-home assignments both of which support long-term knowledge retention.

From an instructional design perspective, I noticed a few key issues with the “Red Apple” program.  An outline of the curriculum was provided in the article.  Each session had a theme and particular objectives to cover, which is important, but the objectives reflect the intent of the instructor.  Objectives should state what the learner is expected to do and this allows the creation of assessment to measure their learning.  For example, “encourage parents to implement dietary and behavior changes according to age-appropriate strategies,” could be changed to “Parents will be able to verbalize two strategies to implement healthy dietary changes in their child.”  This example provides a clearer expectation of what the learner is expected to do.

The “Red Apple” program is a well-designed curriculum for universal application, but it does not assess the learner’s prior knowledge to tailor the curriculum.  The authors discuss this issue of individualization by stating, “…the general objectives of the sessions may not fully match the needs of all participants.” Perhaps a better approach for this program would be to use the pre-intervention surveys to modify the content and learning activities.  In this way, the program can be customized to meet the individual learner’s needs.

In any educational program, it’s important to gain the learner’s attention.  In one study conducted in England, nearly 80% of parents of obese/overweight children did not perceive their child’s weight to be a health risk.4 The “Red Apple” curriculum taught parents how to calculate their child’s BMI and how to interpret the results, but there may not have been enough attention given to the long-term health risks associated with elevated BMI.  Gaining attention by discussing the health concerns associated with obesity in children may increase the learner’s motivation to adopt behavior change.

While the “Red Apple” program was an intensive and comprehensive course in nutrition, healthy eating, and behavior modification for parents of young children, unfortunately, improvements in dietary habits did not persist long-term.  Thus, to have a sustained impact, we’ll need to consider additional ways of reinforcing learning and the development of healthy habits over time.  Educating parents on how to improve their children’s health is a noble endeavor.  Adequate instruction on diet and health in children could improve the health of an entire generation.  Children have the most to gain from developing healthy lifestyles – and the most to lose from unhealthy ones. 

References

  1. World Health Organization. Obesity and Overweight. Key Facts [Internet]. Geneva, Switzerland.: World Health Organization. 2020 April [cited 2020 Nov 2].
  2. Grundlingh J, Dargan PI, El-Zanfaly M, Wood DM. 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J Med Toxicol. 2011 Sep;7(3):205-12.
  3. Gomes AI, Barros L, Pereira AI, Roberto MS. Effectiveness of a parental school-based intervention to improve young children's eating patterns: a pilot study. Public Health Nutr. 2018 Sep;21(13):2485-2496.
  4. Park MH, Falconer CL, Saxena S, et al. Perceptions of health risk among parents of overweight children: a cross-sectional study within a cohort. Prev Med. 2013 Jul;57(1):55-9.

November 5, 2020

Integrating LGBTQIA+ Health Education into the Curricula of Professional Healthcare Students

by K. R. Fairley, Doctor of Pharmacy student, University of Mississippi School of Pharmacy

Summary and Analysis of: Kelley L, Chou CL, Dibble SL, and Robertson PA. A Critical Intervention in Lesbian, Gay, Bisexual, and Transgender Health: Knowledge and Attitude Outcomes Among Second-Year Medical Students, Teaching and Learning in Medicine 2008; 20:3: 248-253.

It is estimated that up to 4.5% of the U.S. population actively identifies themselves as a member of the LGBTQIA+ community.1  When broken down, this equates to nearly 15 million Americans, being found across all major racial, ethnic, religious, and age-based groups.2 Despite these staggering figures, however, the LGBTQIA+ community remains one of the most underserved populations in the United States when it comes to healthcare.3  The reasons for this disparity are multi-factorial, ranging from a lack of trust in providers due to previous discriminatory experiences in the healthcare system to issues with accessing insurance coverage based on name changes or sex and gender differences.  While not the only cause of these disparities, the lack of provider knowledge and competence to furnish the appropriate care to this diverse group of individuals is a contributing factor. 

As a third-year pharmacy student, the topic of LGBTQIA+ health has long been of importance to me.  I think that, over the course of this past year, that importance has only grown, especially after witnessing some of the disparities play out first-hand during my clinical rotations. The discrimination faced by members of the LGBTQIA+ community in the healthcare system, including pharmacies, is just as prevalent now as ever. I knew immediately when the topic of this essay was announced that I wanted to use this time and space to talk about a learning intervention for professional healthcare students to educate them about the needs of LGBTQIA+ patients, as well as to discuss why learning interventions such as this one are so important.


Image credit: Discoversociety. Focus: Looking Critically at Gender and Sexuality.” Discover Society, 5 Dec. 2016, discoversociety.org/2016/12/06/focus-critical-perspectives-in-gender-and-sexuality/.

Originally published in 2008, the study by Leah Kelley and colleagues describes one of the very first interventions of its kind to incorporate LGBT health education into the curriculum.  This educational event was part of the second year Doctor of Medicine program at the University of California San Francisco.  The goals of the intervention were three-fold: (1) To increase the students’ awareness and address existing assumptions about LGBT people, (2) To highlight disparities in health care delivery to which LGBT patients, and (3) To underscore the important role that physicians can play in dispelling these disparities to optimize LGBT health care.3  In order to achieve these goals, the directors of the course developed a three-pronged intervention, consisting of a syllabus, a 1-hour patient panel, and a 1-hour small group session. The syllabus was distributed to the students prior to class and served as a brief introduction to the educational event, while also emphasizing basic definitions and health hazards associated with homophobia.  The 1-hour patient panel was organized based on prior studies that indicated direct contact between students and patients helped medical students form more positive impressions of marginalized populations. The panel consisted of three voluntary participants: an older gay man, a middle-aged lesbian, and a young transgender man.  Each participant gave a short presentation, which was then followed by an interactive Q+A session with the students.  The 1-hour small group sessions focused on working through three case studies designed to highlight several LGBT health issues.  Additionally, a pre-and post-class survey was created to assess if student attitudes had changed as a result of the intervention.

At the conclusion of the two-hour course, more than 90% of students agreed that the combination of the syllabus, patient panel, and small-group cases helped to educate them about relevant LGBT issues. The majority of student comments left on the surveys were overwhelmingly positive, with most of the students indicating that hearing about personal experiences of the LGBTQIA+ panel members was most helpful in terms of identifying and addressing unconscious biases toward the LGBT community.  The results of the pre- and post-class surveys indicated that the students experienced a significant increase in their general knowledge of the challenges that LGBT individuals face in the healthcare system. They also showed an increased level of awareness about sexual orientation, gender identity, and other related attributes relevant to clinical practice.1

A couple of the strengths of this study included (1) the integration of three different but cohesive teaching interventions to achieve the stated goal and (2) the inclusion of face-to-face contact between the medical students and members of the LGBTQIA+ community.  A few limitations were: (1) the short-term follow-up period, (2) the ability to measure a change of attitude as an outcome, and (3) the limited definitions of sexual orientation, attraction, and identity when describing the LGBTQIA+ population.  The authors in this paper continually made references to the LGBT community as “homosexual”, which is not true for every self-identified LGBTQIA+ individual.  I think the study could have been more comprehensive/ inclusive had the researchers also addressed the problems of transphobia and biphobia, as well as some of the more common issues faced by non-binary and asexual individuals in the healthcare system.  In terms of the outcome measures for this study, I believe that the investigators measured them in the best way available, given that a change in attitude is difficult to measure and prone to social desirability bias. I would have liked to have seen a longer follow-up period to this study to evaluate just how much the intervention affected the students during clinical rotations and, ultimately, their practice habits as healthcare providers.

Regardless of its limitations, this study truly has made waves in the medical education community since it was first published. I found over 200 articles citing this paper as well as two books. I believe that educators should take this study as an outline when developing courses to educate healthcare students about the challenges faced by minority groups, including but not limited to the LGBTQIA+ community.  Integrating a working knowledge about the causes and consequences of health disparities, discrimination, and unconscious bias into the professional curriculum can help increase access to healthcare and trust in providers.4 

The authors state:  “It is essential for students to understand that a common causative factor in these health risks is not necessarily in merely being lesbian, gay, bisexual, or transgender: it is living as a LGBT person in a homophobic society.”3 Or, more generally, in a LGBTQ-phobic society.  This remark, I think, is the central message that educators should take away from this paper and it states clearly why educational interventions are so crucial.  More schools (including schools of medicine, pharmacy, and nursing) should consider adding similar interventions to their curriculums.

References

  1. Newport F. In U.S., Estimate of LGBT Population Rises to 4.5%. com, Gallup, 29 Oct. 2020,  Accessed November 5, 2020.
  2. Macapagel K, Bhatia R, Greene GJ. Differences in Healthcare Access, Use and Experiences Within a Community Sample of Racially Diverse Lesbian, Gay, Bisexual, Transgender and Questioning Emerging Adults, LGBT Health 2016; 3 (6): 434-442.
  3. Kelley l , Chou CL, Dibble SL, and Robertson PA. A Critical Intervention in Lesbian, Gay, Bisexual, and Transgender Health: Knowledge and Attitude Outcomes Among Second-Year Medical Students, Teaching and Learning in Medicine 2008; 20 (3): 248-253.
  4. Rowe d, Ng YC, O’Keefe L, Crawford D. Providers’ Attitudes and Knowledge of Lesbian, Gay, Bisexual and Transgender Health, Federal Practitioner 2007; 34(11): 28–34.